Instituto Superior de Economia e Gestão Universidade Técnica de Lisboa

SÉRIES TEMPORAIS

Mestrado em Econometria Aplicada e Previsão (2013/14)

Exame: Época Normal

Data: 17/01/2014 Duração: 2 horas

Nota: Consulta limitada a 2 folhas A4.

- 1. Mostre que as funções de previsão do método de alisamento exponencial simples e do modelo ARIMA(0,1,1) são equivalentes.
- 2. Considere o modelo ARMA(1,1):

$$(1-\phi B)Y_t = (1-\theta B)\varepsilon_t$$

- a) Represente-o na forma médias móveis infinita e determine os seus pesos.
- b) Suponha que um modelo ARMA(1,1) foi ajustado aos dados de uma série e conduziu às estimativas $\hat{\phi}=0.8$ e $\hat{\theta}=0.34$. Será que este modelo pode ser bem representado por um modelo MA(2)?
- 3. Considere o modelo ARIMA(3,1,1):

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)Y_t = (1 - \theta_1 B)\varepsilon_t$$

onde ε_t é um ruído branco com média nula e variância igual a um.

- a) Escreva o modelo sem o operador atraso.
- b) Determine as expressões dos preditores a 1, 2, 3, 4 e *m* passos à frente.
- 4. Considere o modelo ARMA univariado:

$$Y_t = 1 + 1.3Y_{t-1} - 0.4Y_{t-2} + \varepsilon_t$$

onde ε_t é um ruído branco com média nula e variância igual a um.

- a) Calcule a média de Y,.
- b) Determine a FAC para os primeiros 3 lags.

- 5. Considere que foi ajustado um modelo SARIMA(2,1,0)(0,1,1)₁₂ aos dados do logaritmo de uma série temporal Y_t , tendo conduzido às seguintes estimativas dos parâmetros (desvios padrão entre parêntesis): $\hat{\phi}_1 = -0.7098$ (0.0784), $\hat{\phi}_2 = -0.4324$ (0.0788) e $\hat{\Theta}_1 = 0.7969$ (0.1138)
 - a) Escreva o modelo estimado com e sem o operador atraso.
 - b) Na tabela seguinte encontram-se as últimas 12 observações (em logaritmos) e os respectivos resíduos de estimação:

Data	Dez10	Jan11	Fev11	Mar11	Abr11	Mai11	Jun11	Jul11
$ln(Y_t)$	9.981	9.895	9.873	9.790	9.807	10.000	9.971	10.009
Residuos	-0.0302	0.0010	0.0019	0.0302	0.0469	0.0983	0.0115	0.0011
Data	Ago11	Set11	Out11	Nov11	Dez11	Jan12	Fev12	
$ln(Y_t)$	10.109	9.957	9.909	9.900	10.170	9.830	9.825	
Resíduos	0.0477	0.0171	-0.0462	-0.0474	-0.0332	0.0030	0.0126	

Calcule as previsões da série original para os meses de Março e Abril de 2012.

- c) Um teste de Ljung-Box aos resíduos usando 24 *lags* conduziu a um valor-*p* igual a 0.03536. O que tem a dizer acerca do modelo?
- 6. Represente graficamente as funções de resposta às seguintes intervenções e discuta possíveis aplicações das várias intervenções:

a)
$$\left[\omega_0 + \frac{\omega_1 B}{(1 - \delta B)} + \frac{\omega_2 B}{(1 - B)}\right] P_t^{[T]}$$
, com $\omega_0 > 0, \omega_1 < 0, \omega_2 < 0 \text{ e } 0 < \delta > 1$.

b)
$$\left[\frac{\omega_0}{(1-\delta B)(1-B)}\right]P_t^{[T]}$$
, com $\omega_0 > 0$ e $0 < \delta > 1$

Questão	1	2a	2b	3a	3b	4a	4b	5a	5b	5c	6a	6b
Pontuação (0-20)	2	2	2	1	2	1.5	1.5	1.5	2.5	1	1.5	1.5